Beziehungen zwischen Volumen und Masse von Bodenbestandteilen

Abkürzungen gemäss S+S Zusätzliche Abkürzungen im Stil von S+S:

 V_g = gesamtes Bodenvolumen V_w = Bodenwasservolumen V_p = Porenvolumen V_w = Masse des Bodenwassers

V_f = Feststoffvolumen m_f = Masse der Feststoffe

Grundlegende Beziehungen

Porosität n = $V_p/V_q = V_p/(V_p + V_f)$ (Engl. Literatur: porosity f)

Porenzahl $\varepsilon = V_p/V_f$ (void ratio e)

Spezifische Dichte $\rho_f = m_f/V_f$ (mean particle density ρ_s)

Lagerungsdichte $\rho_b = m_f/V_g$ (bulk density ρ_b)

Gravimetrischer Wassergehalt $\Theta_g = m_w/m_f$ (mass wetness w)

Volumetrischer Wassergehalt $\Theta_v = V_w/V_q$ (volume wetness Θ)

Sättigungsgrad $s = V_w/V_p$ (degree of saturation) s

Abgeleitete Beziehungen

Zwischen Porenzahl und Porosität

 $\varepsilon = n/(1-n)$ $n = \varepsilon/(1+\varepsilon)$

Zwischen Porosität und Lagerungsdichte

$$n = 1 - \rho_b / \rho_s$$
$$\rho_b = (1-n)\rho_s$$

Zwischen gravimetrischem und volumetrischem Wassergehalt

$$\Theta_{v} = \Theta_{g} \rho_{b} / \rho_{w}$$

 $\Theta_{g} = \Theta_{v} \rho_{w} / \rho_{b}$

Zwischen volumetrischem Wassergehalt und Sättigungsgrad

$$\Theta_v = s n$$

 $s = \Theta_v/n$

Beispiel

Eine feuchte Bodenprobe mit einem Volumen von 0.64 Liter (6.4•10⁻⁴ m³) wiegt 1.0 kg; nach dem Trocknen im Ofen wiegt sie noch 0.8 kg.

Somit können u.a. folgende Grössen bestimmt werden: die Lagerungsdichte, die Porosität, die Porenzahl, den volumetrischen und gravimetrischen Wassergehalt, und den Sättigungsgrad.

Annahme: Spezifische Dichte $\rho_f = 2650 \text{ kg/m}^3$

Lagerungsdichte $\rho_b = m_f/V_q = 0.8 \text{kg}/6.4 \cdot 10^{-4} \text{ m}^3 = 1250 \text{ kg/m}^3$

Porosität n =
$$V_p/V_g$$
 = $(V_g-V_f)/V_g$; da V_f = m_f/ρ_s = 0.8kg/2650kgm⁻³ = 3.02•10⁻⁴ m³, gilt n = $(6.4-3.02)$ •10⁻⁴ m³/6.4•10⁻⁴ m³ = 0.528 = 52.8%

oder mit der Beziehung von oben:

Porosität n = 1-
$$\rho_b/\rho_s$$
 = 1-1250/2650 = 1-0.472 = 0.528

Porenzahl
$$\varepsilon = V_p/V_f = (V_0 - V_f)/V_f = (6.4 - 3.02) \cdot 10^{-4} \text{ m}^3/3.02 \cdot 10^{-4} \text{ m}^3 = 1.12$$

oder mit der Beziehung von oben:

Porenzahl
$$\varepsilon = n/(1-n) = 0.528/(1-0.528) = 1.12$$

Gravimetrischer Wassergehalt
$$\Theta_g = m_w/m_f = (m_g-m_f)/m_f = (1.0-0.8)kg/0.8kg = 0.25 = 25\%$$

Volumetrischer Wassergehalt
$$\Theta_{\rm v}$$
 = $V_{\rm w}/V_{\rm g}$ = $(m_{\rm w}/~\rho_{\rm w})/V_{\rm g}$ = 2.0•10⁻⁴ m³/6.4•10⁻⁴ m³ = 0.3125 = 31.25%

oder mit der Beziehung von oben:

Volumetrischer Wassergehalt
$$\Theta_v = \Theta_g \ \rho_b / \ \rho_w = 0.25 (1250 \text{kgm}^{-3}/1000 \text{kgm}^{-3}) = 0.3125 = 31.25\%$$

Sättigungsgrad s =
$$V_w/V_p = V_w/(V_g-V_f) = 2.0 \cdot 10^{-4} \text{ m}^3 / (6.4-3.02) \cdot 10^{-4} \text{m}^3 = 0.592$$

H. Elsenbeer